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ABSTRACT

Self-supervised learning methods have achieved promis-
ing performance for anomalous sound detection (ASD) un-
der domain shift by incorporating the metadata of domain
shift types and machine sound attributes in feature learning.
However, the relation between domain shifts and machine
sound attributes has yet to be fully utilised despite their po-
tential benefits for characterising domain shifts. This paper
presents a hierarchical metadata information constrained self-
supervised ASD method, where the hierarchical relation be-
tween domain shift types (section IDs) and attributes is con-
structed and used as constraints to improve feature representa-
tion. In addition, we propose an attribute-group-centre based
method for calculating the anomaly score under the domain
shift condition. Experiments show improved audio feature
learning over the state-of-the-art methods in DCASE 2022
challenge Task 2.

Index Terms— Anomalous sound detection, domain
shift, self-supervised learning, metadata

1. INTRODUCTION

Anomalous sound detection (ASD) is a task for automatically
identifying the working condition of a machine as normal
or abnormal based on the sound emitted from the machine.
Due to the difficulty in collecting rare and diverse anomalous
sounds, it is a challenging unsupervised learning task with
only normal sounds available for model training [1]. Unsu-
pervised ASD methods based on autoencoder (AE) [2—4] or
self-supervised classification models [5,6] with metadata (e.g.
machine IDs) incorporated achieved state-of-the-art perfor-
mance on the Detection and Classification of Acoustic Scenes
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and Events (DCASE) challenge 2020 Task 2 [1]. However,
ASD often has limited performance in practice due to the do-
main shift problem [7]. That is, acoustic characteristics differ
between the source domain (in training) and the target domain
(in detection), with the change of attributes [7] (e.g., machine
operating conditions or types of noise). Due to this problem,
the anomalies in the target domain can be misidentified with
the model trained using sounds from the source domain.

With a focus on the domain shift problem, DCASE
2022 challenge Task 2 launched a new task for unsuper-
vised ASD [7-10]. Its dataset has hierarchical metadata of
machine type, section ID and attributes, as we illustrated in
Fig. 1(b). Each section ID refers to a subset of the data within
a domain shift scenario under a machine type, and domain
shifts result from the change of attributes, e.g., the machine’s
operation speed and the environmental noise level. The 1%
ranked method in the challenge [8] adopts self-supervised
classification with section IDs as labels for feature learning.
On the other hand, our previous work achieved 3™ place [9]
using attributes as labels, considering their effect on acoustic
characteristics. However, only using either section IDs [8, 11]
or attributes [9] may not be sufficient to obtain features help-
ful for characterising domain shifts.

Existing methods [12, 13] used both section IDs and at-
tributes in a parallel way. Taking attributes and section IDs in
parallel assumes that the attributes and section IDs are inde-
pendent or that the same attribute works equally under differ-
ent domain shifts. However, the same attribute can impact the
machine sound differently under different domain shift types
(section IDs). Thus, the relation between attributes and do-
main shift types has yet to be fully utilised despite their po-
tential benefits for characterising domain shifts.

This paper is the first study exploiting the implicit hier-
archical relation between domain shift type and attribute for
more effective feature learning for anomalous sound detec-
tion under domain shift. We propose a hierarchical metadata
information constrained (HMIC) self-supervised method us-
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Fig. 1. Framework of the proposed HMIC method, where the hierarchical relation of the metadata information is exploited by

the introduced hierarchical metadata information structure, and a backbone network (i.e., MobileFaceNet [

]) is used for the

extraction of low-level feature f; and high-level feature f;,, which are constrained by section ID label [;p, and attribute group
label [ 4, respectively. Here, 7 (-) denotes the feature extractor.

ing domain shift types and attributes in a hierarchical way.
Specifically, we set the attribute groups (AGs) under each
section ID (domain shift type) to cluster the data with the
same attributes’ values as an attribute group, as shown in
Fig. 1 (b). Then, we use the hierarchical relation as the con-
straint in self-supervised learning to obtain finer audio fea-
ture representation, with the section IDs characterising the
type of domain shift for low-level feature learning and the at-
tribute groups exploiting acoustic characteristics of each do-
main shift for high-level feature learning. Moreover, we pro-
pose an attribute group centre (AGC) based method to cal-
culate anomaly scores. AGC represents the average of the
learnt audio features from each attribute group. We calculate
the anomaly score using the minimal Mahalanobis distance
between the test sound’s audio feature and AGCs to better
adapt to the variance of domain shifts. Experiments con-
ducted on the DCASE 2022 challenge Task 2 dataset demon-
strate the proposed method’s improved self-supervised audio
feature learning compared to the state-of-the-art methods.

2. PROPOSED METHOD

This section introduces our proposed HMIC, as illustrated in
Fig. 1, which consists of a backbone (i.e., MobileFaceNet
[14]) for feature extraction, and two classifiers (ID classifier
Crp and attribute classifier C4¢) to predict section ID and
attribute group label, respectively. It uses a hierarchical meta-
data information structure to exploit the implicit relation be-
tween section ID and attributes for finer feature learning. In
addition, we introduce an AGC-based method for calculating
the anomaly scores in the detection stage.

2.1. Hierarchical Metadata Information Structure

Addressing domain shift in ASD, metadata information
(i.e., section IDs and attributes) related to domain shift is

utilised, with their hierarchical relation being further ex-
ploited through a hierarchical metadata information structure
in Fig. 1 (b). To emphasise audio clips under each section ID
may have certain attributes with different values, we cluster
data with the same attributes’ values as an attribute group
under this section ID. Therefore, each section ID has sev-
eral AGs, and each AG under the same section ID has the
same attribute types but different values. So, we constructed
a metadata information tree for each machine type, with
section IDs as nodes and AGs as leaves, as in Fig. 1 (b).

Taking the machine type ToyCar in DCASE 2022 chal-
lenge Task 2 [7] as an example, section ID_00 contains four
attributes (i.e., “car model”, “speed”, “microphone number”,
and “noise number”) with different attribute values. Here,
“car model” has the value of Al, C2, etc., and “noise num-
ber” has the value of 1, 2, etc. By grouping these attributes in
terms of their values, we obtain 12 AGs for section ID_00, and
a total number of 44 AGs for the ToyCar. Thus, the DCASE
2022 dataset of 7 machine types each with 6 section IDs, be-
comes 250 AGs under 42 section IDs to construct the hierar-
chical relation between section ID and attributes. Therefore,
we can employ this hierarchical relation between section IDs
and attributes as the constraint to learn finer audio features to
mitigate the domain shift issue in ASD.

2.2. Hierarchical Constrained Classification

With the hierarchical information discussed above, we can
employ section IDs and AGs as the self-supervision labels
to constrain the learning of the low-level and high-level au-
dio features, respectively, as shown in Fig. 1 (a). Here, low
and high levels indicate the output coarse and fine-grained
features from our model’s low and high-level layers with the
hierarchical constraint, respectively.

The log-Mel spectrogram X of the input audio signal
s is the input of our model. We obtain the low-level fea-
ture f; and high-level feature f; from the backbone network



(MobileFaceNet [14]) via a feature extractor F(-) and a 2-
dimensional convolutional layer (Conv2D), respectively,

fi=F(X) (1)
f1r = Conv2D(f,) )

To utilise hierarchical relation to learn features relevant
to domain shift, section ID and AG are employed as self-
supervision labels, I;p and 4, to constrain the learning of
Sf; and f,, respectively. First, two simple linear classifiers
(ID classifier C;p and attribute classifier C 4¢) are adopted for
section ID label and AG label prediction, that Iip=Cip f)
and ZAG = Cac(f},), respectively. Then, an ID loss L;p and
an attribute loss £ 4¢ are introduced to constrain the process
of learning the low-level and high-level features, using e.g.
the cross-entropy (CE) loss,

Lip=CE(lp,lip) 3)
Lag = CE(lag,lac) 4

Finally, the total loss L,t4; for model training is
Liotat = ALip + (1 — X)L ac (%)

The weight A is empirically tuned for each machine type.

2.3. Attribute Group Centre-based Anomaly Detection

Anomaly score calculation is the key to evaluating the test
sound in the anomaly detection stage. We introduce the at-
tribute group centre (AGC) to calculate the anomaly score.
Each attribute group’s AGC is the average of the learnt audio
features from that attribute group. Then, the feature of the test
sound is compared with all the AGCs to allow better anomaly
detection in the presence of domain shift.

Assume N training audio clips under the m-th attribute
group with the label [ sg,,,—1, m = 1,2, ..., M and M is the
number of attribute groups under the corresponding section
ID. The m-th attribute group centre ¢,, is

1 &,
en = DI (©)

n=1

where f n, denotes the high-level audio feature derived from
the model for the n-th training audio clip, n = 1,2,..., N.

Then, the Mahalanobis distance [15] is used to measure
similarity between the audio feature representation f of the
sound under test and each AGC ¢,,, m = 1,2,..., M, and
the minimal Mahalanobis distance is taken as the anomaly
score A

A=

min
me[1,M)]

\/(7, en)TEUf —em) (@)

where X! is the inverse of the covariance matrix ¥, and
is obtained from the feature of all the audio clips under the
m-th attribute group of the same section.

Our proposed ASD method with the AGC-based anomaly
score calculation is named HMIC-AGC. The proposed
method is later compared with HMIC-DC, which calcu-
lates the Mahalanobis distance between f and the domain
centre (DC), i.e., the average feature of each domain, instead
of each attribute group, to derive the anomaly score. Though
DC is widely used for anomaly score calculation, such as the
1°* ranked method in DCASE 2022 challenge [8], DC uses
average features from multiple domains, while AGC consid-
ers acoustic characteristics of each specific domain to obtain
more accurate feature representation under domain shifts.

3. EXPERIMENTAL RESULTS

3.1. Experimental Setup

Dataset The training data for model training is from the devel-
opment and the additional datasets of the DCASE 2022 chal-
lenge Task 2 [7], which includes five different machine types
(bearing, fan, gearbox, slider, and valve) [16] and two types
of toys (i.e., ToyCar and ToyTrain) [17]. Each machine type
contains six section IDs, each with 990 and 10 audio clips
from the source and target domain, respectively. We evalu-
ate the performance on the evaluation dataset of the DCASE
2022 challenge Task 2. Note that the evaluation dataset’s do-
main information (source and target) is unknown to verify the
generalization ability of the ASD systems.

Evaluation Metrics The evaluation metrics include the area
under the receiver operating characteristic curve (AUC), par-
tial AUC (pAUC), and the harmonic mean of AUC and pAUC
scores over all the machine types, sections, and domains [7].
Implementation The log-Mel spectrogram of the audio clips
is used as the input feature for our model, where the frame
size is set as 1024 with an overlap of 50%, and the number
of Mel filter banks is 128. The dimension of the input log-
Mel spectrogram is 128 x 313. Our model is trained with
120 epochs, using Adam optimizer [19] with an initial learn-
ing rate of 0.0001, and the cosine annealing strategy is then
applied for changing the learning rate.

3.2. Experimental Results

Performance Comparison Our proposed HMIC-AGC method
hierarchically uses the domain shift type and attribute for self-
supervised ASD with AGC for anomaly score calculation.
In the experiment, it was compared with baseline methods
(AE [18] and MobileNetV2 [18]), the self-supervised meth-
ods only using the attribute (Attribute-only, as the 3™ ranked
method in DCASE 2022 Task 2 [9]) or section ID (Domain-
only, as the 1 ranked method [8]), and HMIC-DC using
DC for anomaly score calculation. For a fair comparison,
all methods are performed without model pretraining, and all
adopt log-Mel spectrogram as the input without the high-pass
filter in [8] or temporal information fusion in [9].



Table 1. Performance comparison in terms of AUC (%) and pAUC (%) on the evaluation dataset of DCASE 2022 challenge

Task 2. Total: harmonic mean (%) of AUC and pAUC scores over all the machine types, sections, and domains.

Methods ToyCar ToyTrain Bearing Fan Gearbox Slider Valve Total
AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC
AE[18] 61.18 6021 43.14 4936 5993 5395 41.16 50.12 6192 5195 5895 5416 5426 5130 53.01 52.80
MobileNetV2 [18] 4279 53.44 5122 5098 5823 52.16 5034 5522 5134 4849 6242 5307 7277 6516 54.19 53.67
Attribute-only [9] 87.61 73.12 56.64 52.60 73.92 58.77 5269 49.79 7411 5996 7339 59.51 78.14 69.26 67.68 59.47
Domain-only [8] ~ 77.15 67.47 5592 5153 7191 60.74 5452 53.86 7875 5330 7887 59.56 8560 7859 69.51 59.56
HMIC-DC 82.44 7192 57.88 52775 6745 59.14 5655 53.03 7722 59.74 8059 5875 89.70 82.69 70.20 61.15
HMIC-AGC 8791 7751 59.10 5283 68.14 5941 57.63 5325 7978 6129 80.76 5829 89.87 8230 7179 61.91
, Normal mmm ID_00 HMIC-AGC is slightly lower than the Domain-only method,
a3 Anomaly == 1007 it significantly improves the pAUC performance on ToyCar
= :B-gi and Gearbox, with 10.04% and 7.99% improvement, respec-
9. - == ID_05 tively. Specifically, both HMIC-DC and HMIC-AGC can
- < =gl improve the total harmonic mean performance, and HMIC-
ol N, » Y AGC achieves the best total harmonic mean performance.
e e ek The results demonstrate the effectiveness of the hierarchical
’ ¥ j a”',*Q;"%l‘\_i g metadata information constraint and the AGC-based anomaly
. b o T scores calculation, which show the superior generalisation
_ ability of our proposed methods for ASD under domain shift
(@) Domain-only [¢] S — conditions. In addition, the performance on the development
.&@ s Anomaly mmm 1D_01 set has the same trend as that on the evaluation set, though
¥ -_—e X === 1D_02 . .
»og == 1D 03 not presented in this paper.
= :g—gg Visualisation Analysis To further verify the effectiveness of
the proposed HMIC for improved feature learning, the test
data (with all 6 section IDs) from both development and
evaluation datasets are evaluated. The t-distributed stochastic
neighbour embedding (t-SNE) [20] cluster visualisation of
the learnt features using section ID only, attribute only, or the
proposed method are illustrated in Fig. 2. It can be seen that
(b) Attribute-only [9] audio features are misclassified in the presence of overlapping
Normal  mmm 1D_00 between sections ID_03 and ID_04, when only using section
o= Anomaly mmm ID_01 . . . . .
POl A . ID or attribute (metadata without hierarchical relation) for
&% “3»“: ‘f; — :3332 self-supervised classification. In contrast, they can be dis-
® - * “?é) == 1D_05 tinguished with the proposed method from different sections
¢ < 904 P " . . .
;? « o v o as the areas marked with orange in Fig. 2 (c). The results
* u o, e e ae Y demonstrate the effect of HMIC for more distinguishable
> T W;K o & feature learning under domain shift.
<4

(c) HMIC (proposed)
Fig. 2. The t-SNE visualisation of the learnt audio features us-
ing different self-supervised methods for machine type Bear-
ing. Different colours represent different section IDs. “¢” and
“x” respectively represent normal and anomalous sounds.

As can be seen from Table 1, both HMIC-DC and HMIC-
AGC can significantly improve the detection performance for
all machine types except Fan, as compared with the baseline
methods, i.e., AE [18] and MobileNetV2 [18]. In addition,
the proposed methods achieve the best overall performance
compared to Domain-only or Attribute-only methods from
the 1%t and 3" ranked submissions in DCASE 2022, respec-
tively. Although the pAUC performance on Slider and Fan of

4. CONCLUSION

We have presented a self-supervised method for anomalous
sound detection under domain shift, where a hierarchical
metadata information structure is constructed and used as
the constraint in self-supervised learning for improved fea-
ture learning. In addition, an attribute group centre based
anomaly scores calculation method is introduced, which
further enhances the domain generalisation ability by con-
sidering the attributes of domain shift. Experimental results
demonstrate the effectiveness of the proposed method, with
substantial improvements in the audio feature learning over
those that only use section ID or attributes, as in the state-of-
the-art methods in DCASE 2022 challenge Task 2.
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